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Static and dynamic aspects of the rms local slope of growing random surfaces

George Palasantzas
Department of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

~Received 5 March 1997!

In this work, we investigated static and dynamic aspects of the rms local surface slope ‘‘r’’ for self-affine
random surfaces. The rms local slope is expressed as a function of the rms roughness amplitudes, the in-plane
correlation lengthj, and the roughness exponentH (0,H,1), as well as is shown to scale asr;sj2H.
Application to room temperature heteroepitaxial silver films shows the rms local slope to be closely time
invariant in the thickness range 10,h,1000 nm with an asymptotic valuer'0.7. However, discrepancies in
deposition details could alter the mode of film growth leading to a power law growth of the local slope as a
function of the film thicknessh; r}hc (c.0). @S1063-651X~97!04007-5#

PACS number~s!: 68.55.Jk, 68.60.Wm, 81.15.Tv
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The kinetic roughening of growing surfaces has bee
topic of intensive research for the past ten years becaus
fundamental and technological importance@1,2#. The main
growth factors of thin films under nonequilibrium condition
are deposition, desorption, and surface diffusion. A bala
among them leads, in many cases, to the self-affine sca
hypothesis@3,4#. In terms of this hypothesis, the rms surfa
width grows with time t and length L as s(L,t)
5LHF(t/L1/z) with s(L)}LH, if t/L1/z→1`, and s(t)
}tb, if t/L1/z→0 @3#. The exponentsH, b, andz are, respec-
tively, the roughness exponent@5#, the growth exponent, an
the dynamic exponent which describes the growth of
in-plane correlation lengthj; j}t1/z. Moreover, the scaling
exponents obey the consistency relationz5H/b @3#.

For surface diffusion driven growth where the desorpt
is negligible, nonlinear growth models predicted the exp
nents (H,b)5(2/3,1/5) @6#, while their linear versions
yielded (H,b)5(1,1/4) @7#. Monte Carlo simulations de
signed to describe the detailed microscopic processe
these equations@8# showed that the nonlinear models d
scribe an intermediate range surface diffusion, while the
ear ones describe a local surface diffusion. In the latter c
a groove instability develops with the rms local slope
creasing with time asr} ln1/2(t) @9#. Such an anomalou
scaling behavior was observed in a low temperature
moepitaxial growth on Si~111! @10#, and in heteroepitaxia
growth of Pt on glass@11#, where the measured roughne
exponent was found to beH'0.9. By contrast, for nonlinea
surface diffusion models@6# the rms local slope remains tim
invariant in the self-affine scaling regime@12#.

In former heteroepitaxial studies where the growth p
cess was surface diffusion driven~Ag/quartz! @13#, the mea-
sured exponentH was found distinctly lower than 0.9, an
larger than that predicted by the nonlinear diffusion mod
~.2/3! @6#. Moreover, the consistency relationz'H/b was
experimentally confirmed, and it was shown that details
the deposition processes can have a great impact on th
tent, spatial correlations can develop which lead to the
crepancyzÞH/b. Nevertheless, the thickness dependence
the rms local surface slope remained unexplored, and wil
the topic of the present work. Indeed, the temporal evolut
of the rms local slope can be a unique feature to distingu
linear diffusion processes from the nonlinear ones. Furth
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more, emphasis will be given to analytic calculations of t
rms local surface slope as a function of the roughness par
eterss, j, andH in terms of simple phenomenological co
relation models which, however, can capture the correct s
affine asymptotic behavior and compare it with real d
reasonably well@13,14#.

The rms local surface slope is given byr5@^(¹z)2&#1/2,
with z(r ) the surface height profile@z^(r )&50#. The latter is
considered a random~single valued! function of the in-plane
position vectorr5(x,y). If we define the Fourier transform
of z(r ) by z(r )5*z(q)e2 iqrd2q, we obtain, after ensembl
average over possible roughness realizations,

r5F2E E q•q8^z~q!z~q8!&e2 i ~q1q8!•rd2qd2q8G1/2.
~1!

For statistically stationary surfaces up to second order~trans-
lation invariance!, we have ^z(q)z(q8)&5@(2p)4/A#d2(q
1q8)^uz(q)u2&. Upon substitution in Eq.~1! we obtain the
rms local slope over an area of dimensionsL3L

r~L !5F ~2p!5

A E
kL,q,Qc

q3^uz~q!u2&dqG1/2, ~2!

where A is the macroscopic average flat surface,kL
52p/L, and Qc5p/a0 with a0 the atomic spacing. Fo
L→1` (L@j), Eq. ~2! yields r(L)'r, with r rms local
slope over an area with macroscopic dimensions.

For self-affine fractal surfaces, the roughness spect
^uz(q)u2& has the asymptotic scaling behavior@3#

^uz~q!u2&5H }q2222H qj@1

const qj!1.
~3!

The asymptotic limits of^uz(q)u2& in Eq. ~3! are satis-
fied by the simple Lorentzian model^uz(q)u2&s f
5@A/(2p)5#s2j2(11aq2j2)212H @14#. Indeed forqj@1,
we have^uz(q)u2&s f}q2222H, while for qj!1, ^uz(q)u2&s f
}s2j2. The latter as a function ofj reads of the form
^uz(q)u2&s f}j212H, since for growing self-affine surfacess
}jH @3#. The parameter ‘‘a’’ is given by the relationsa
5(1/2H)@12(11aQc

2j2)2H#, if 0,H,1, and a
1254 © 1997 The American Physical Society
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5(1/2)ln(11aQc
2j2), if H50 ~logarithmic roughness! @14#.

Besides the simplicity of̂ uz(q)u2&s f , its Fourier transform
yields the analytically solvable correlation functionC(r )
52s222@s2/aG(11H)#(r /2a1j)HKH(r /2a

1/2j) @14#. Fi-
nally, we point out that the roughness exponentH is a mea-
sure of the degree of surface irregularity@15#, and is related
with a local fractal dimensionD532H @3#.

Calculation of the rms local surface slope from Eq.~2!
and the known expression of^uz(q)u2&s f yields

rs f~L !5
s

21/2ajH 1

12H
@Xc

12H2XL
12H#

1
1

H
@Xc

2H2XL
2H#J 1/2,

~4!

Xc511aQc
2j2 and XL511akL

2j2.

For j@a0 and 0,H,1, sinceQcj@1, Eq. ~4! for L@j
yields the asymptotic behaviorrs f'B(H)(sj2H), with
B(H)5@Qc

12H/aH(222H)1/2# which shows that the loca
slope scales primarily as;sj2H.

Figure 1 depicts the dependence of the local slope@Eq. ~4!
for L→1`] on the roughness exponentH for various val-
ues of the long-wavelength ratios/j. The effect ofH on the
local slope is dominant in comparison with that ofs/j. In
fact, an increase ofH from 0 to 1 leads to a decrement of th
local slope even by two orders of magnitude, while an inc
ment ofs/j by an order of magnitude cause only a moder
increment of the local slope which is more pronounced
large roughness exponentsH(.0.5). Finally, Fig. 2 displays
the rather weak dependence of the local surface slope on
in-plane length scalel in terms of Eq.~4!.

During the growth of self-affine surfaces,s andj evolve
as a function of film thickness~for constant deposition rate
t;h! @3# ass5A1h

b, andj5A2h
1/2, which upon substitu-

tion into Eq. ~4! for L@j, we obtain rs f
'@B(H)A1 /A2

H#h(bz2H)/H. Thus, the local slope is time in
variant]rs f /]h50 for H5const, if and only ifbz5H. The
application of kinetic growth theories to heteroepitaxial s
tems was concluded earlier on growth studies of CuCl
CaF2(111) @16#, and the relationbz5H was confirmed ex-

FIG. 1. Schematics of the rms local surface slopers f vsH ~for
L51`! for a050.3 nm,s52.0 nm, andj520,40,80 nm.
-
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perimentally for room temperature grown Ag/quartz film
@13,17#. Using the experimentally determined relationss
5(0.956)h0.29 andj5(5.31)h0.40 ~h in nm! @13,17# and Eq.
~4! for L→1` with H50.82, we calculated in Fig. 3 the
local slope as a function of film thickness. The latter de
creases with film thickness, however, less than 10% which
to within the experimental error of the accuracy, where th
scaling exponents were also determined. Moreover, suc
variation takes place over a range of film thicknesses su
cient to establish the asymptotic valuers f'0.7.

Nevertheless, discrepancies of the deposition details a
ing from precise control of the deposition rate during initia
stages of growth, and frequent interruptions of the grow
processes in order to prevent sample heating, could alter
mode of film growth by itself leading to the inconsistenc
zÞH/b @13#. From the experimental relationss
5(0.385)h0.376, j5(5.5)h0.28, and Eq. ~4! for L→1`,
with H50.85, we calculated in Fig. 4 the local slope as
functionof film thicknessh. As can be observed, the loca
surface slope changes as an overall over the range 10–1

FIG. 2. Schematics of the rms local surface slopers f(L) vs L
for a050.3 nm,s52.0 nm,j540 nm, and three consecutive value
of the roughness exponentH ~50.7,0.8,0.9!.

FIG. 3. Schematics of the rms local surface slopers f vs h ~for
L51`! for the silver films, wherez'b/H with a050.3 nm, s
5(0.956)h0.29, j5(5.31)h0.40, and roughness exponentH50.82.
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nm closely by more than 60% following a power lawr
}h0.42, since (bz2H)/H'0.42.

In the system under discussion, Schwoebel barri
~which usually exist at the step edge of well-defined terra
preventing step-down diffusion and resulting in violation
the self-affine hypothesis! are unlikely to be present due t
the different observed morphologies@see scanning tunnel mi
croscope~STM! images in Fig. 1 of Ref.@13## than that of
large scale pyramids characterizing growth withH51 @19#.
In addition, in our polycrystalline system, with randomly or
ented grains, Schwoebel effects are rather unlikely to oc
However, if Schwoebel barriers are present, the slope of
pyramids remains constant for considerable barriers whil
increases as a power law for weak barriers@20#.

FIG. 4. Schematics of the rms local surface slopers f vs h ~for
L51`! for the silver films wherezÞb/H with a050.3 nm, s
5(0.385)h0.376, j5(5.5)h0.28, and H50.85. The local slope in-
creases following a power law behavior}h0.42.
rs
s

r.
e
it

Equation~4! in the non-self-affine limitH51 yields the
logarithmic behavior ruH515(s/21/2aj)(ln@11aQc

2j2#
22a)1/2 for L@j. On the other hand, atH51 the self-affine
correlationC(r );e2(r /j)2H @15# yields the Gaussian rough
ness spectrum̂uz(q)u2&g5@A/(2p)6#s2j2e2q2j2/4p with an
associated rms local surface sloperg52p1/2(s/j)@1

2e2Qc
2j2/4p2(Qc

2j2/4p)e2Qc
2j2/4p#1/2, at L@j. For j@a0 ,

we obtain in both casesrg'2p1/2(s/j) and ruH51
'(s/aj)ln1/2(j/a0). For s}hb, j}h1/2, and b51/z
(H51) @19#, the Lorentzian model yields the logarithm
time dependenceruH51' ln1/2(t) which compares to the be
havior observed in the anomalous scaling regime@9#, while
the Gaussian model yieldsrg;const, which compares to th
behavior observed in unstable growth with considera
Schwoebel barriers@20#.

In conclusion, we investigated properties of the rms lo
surface slope of self-affine rough surfaces. Our calculati
were based on phenomenological surface models which
spite theirad hocnature can capture the correct self-affi
scaling behavior, and compare reasonably well in ma
cases with real data. Moreover, in terms of these mod
analytically solvable expressions of the rms local slope w
obtained which were also in agreement with the time inva
ance required in self-affine growth. Application of our resu
to the case of heteroepitaxially grown metal films enab
the estimation of the rms local slope over a wide range
film thicknesses~10–1000 nm!. Finally, discrepancies in the
deposition details can have great impact on the mode of
growth by itself, which is revealed through the inconsisten
relation zÞH/b among the scaling exponents or altern
tively the thickness variance of the local surface slope.

I would like to acknowledge support from the Delft Un
versity of Technology, useful discussions with J. Krim, a
helpful correspondence with T.-M. Lu.
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