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Static and dynamic aspects of the rms local slope of growing random surfaces
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In this work, we investigated static and dynamic aspects of the rms local surface glofer ‘self-affine
random surfaces. The rms local slope is expressed as a function of the rms roughness ampgheideplane
correlation lengthé, and the roughness expondt(0<H<1), as well as is shown to scale ps-oé ™.
Application to room temperature heteroepitaxial silver films shows the rms local slope to be closely time
invariant in the thickness range €t <1000 nm with an asymptotic valye~0.7. However, discrepancies in
deposition details could alter the mode of film growth leading to a power law growth of the local slope as a
function of the film thicknes#; pch® (¢>0). [S1063-651X97)04007-5

PACS numbg(s): 68.55.Jk, 68.60.Wm, 81.15.Tv

The kinetic roughening of growing surfaces has been anore, emphasis will be given to analytic calculations of the
topic of intensive research for the past ten years because ofins local surface slope as a function of the roughness param-
fundamental and technological importaride2]. The main eterso, & andH in terms of simple phenomenological cor-
growth factors of thin films under nonequilibrium conditions relation models which, however, can capture the correct self-
are deposition, desorption, and surface diffusion. A balancaffine asymptotic behavior and compare it with real data
among them leads, in many cases, to the self-affine scalinggasonably wel[13,14].
hypothesig3,4]. In terms of this hypothesis, the rms surface  The rms local surface slope is given py=[((Vz)?)]*?,
width grows with time t and length L as o(L,t) with z(r) the surface height profilez((r))=0]. The latter is
=L"F(t/LY?) with o(L)<LM, if t/LY*—+o, and o(t)  considered a randoifsingle valuegl function of the in-plane
«t#, if t/LY?—0 [3]. The exponentsl, B, andz are, respec- position vectorr =(x,y). If we define the Fourier transform
tively, the roughness exponédfi], the growth exponent, and of z(r) by z(r)=[z(q)e '9'd?q, we obtain, after ensemble
the dynamic exponent which describes the growth of theaverage over possible roughness realizations,
in-plane correlation lengtl; £=<t*?. Moreover, the scaling
exponents obey the consistency relatisaH/B [3]. | / PN\ a1 (G+G") T o2m (2

For surface diffusion driven growth where the desorption p= f f q-a'(z(@)z(q’))e T Md qd g
is negligible, nonlinear growth models predicted the expo- (1)
nents H,B)=(2/3,1/5) [6], while their linear versions .- .
yielded H,8)=(1,1/4) [7]. Monte Carlo simulations de- Fo_r sta_tlstlcglly stationary surfaces u,p to secongi o('nle;ns-
signed to describe the detailed microscopic processes Jﬁtl(?l’l mvan;mcg we havg(z(q);(q ) =[(2m) /A].5 (q
these equation§8] showed that the nonlinear models de- +9')(|2(q)|*). Upon substitution n Eq(_l) we obtain the
scribe an intermediate range surface diffusion, while the linfMS local slope over an area of dimensidns L
ear ones describe a local surface diffusion. In the latter case,

a groove instability develops with the rms local slope in- p(L)=
creasing with time agpoIn¥4(t) [9]. Such an anomalous

scaling behavior was observed in a low temperature ho- ) )
moepitaxial growth on $111) [10], and in heteroepitaxial Where A is the macroscopic average flat surfade,
growth of Pt on glas§11], where the measured roughness =27/L, and Q.=m/a, with a, the atomic spacing. For
exponent was found to Hé~0.9. By contrast, for nonlinear L— % (L>¢§), Eq. (2) yields p(L)~p, with p rms local
surface diffusion model] the rms local slope remains time SlOpe over an area with macroscopic dimensions.

1/2

1/2

2ar)°
(2m) ' @

A f a*(|z(a)[?)dq
kL <g<Q,

invariant in the self-affine scaling regini2). For self-affine fractal surfaces, the roughness spectrum
In former heteroepitaxial studies where the growth pro<|z(d)|?) has the asymptotic scaling behaviai

cess was surface diffusion drivéAg/quart? [13], the mea- —9_oH 1

sured exponenil was found distinctly lower than 0.9, and (|2()]?)= “q qé> 3

larger than that predicted by the nonlinear diffusion models
(>2/3) [6]. Moreover, the consistency relatiaa=H/ B was
experimentally confirmed, and it was shown that details offhe asymptotic limits of(|z(q)|?) in Eq. (3) are satis-
the deposition processes can have a great impact on the efied by the simple Lorentzian model(|z(q)|?)ss
tent, spatial correlations can develop which lead to the dis=[A/(27)°]o?£*(1+ag?é?) "1~ [14]. Indeed forgé>1,
crepancyz# H/ 8. Nevertheless, the thickness dependence owve have(|z(q)|?)sicq 272", while for g&é<1, (|z(q)|)ss
the rms local surface slope remained unexplored, and will beca®£%. The latter as a function of reads of the form
the topic of the present work. Indeed, the temporal evolutior{|z(q)|?)s* £*"2", since for growing self-affine surfaces
of the rms local slope can be a unique feature to distinguiskc € [3]. The parameter 4" is given by the relationsa
linear diffusion processes from the nonlinear ones. Further=(1/2H)[1—(1+aQ§§2)‘H], if O<H<1, and a

const qé<1.
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FIG. 1. Schematics of the rms local surface slppevs H (for
L= +o) for a;=0.3 nm, c0=2.0 nm, andé=20,40,80 nm.

=(1/2)In(1+aQ?¢?), if H=0 (logarithmic roughnesg14].
Besides the simplicity of|z(q)|?)s, its Fourier transform
yields the analytically solvable correlation functid®y(r)
=20%—2[d?lal (1+H)](r/2a*€) K y(r/2a?¢) [14]. Fi-
nally, we point out that the roughness exponidnis a mea-
sure of the degree of surface irregulafifys], and is related
with a local fractal dimensio® =3—H [3].

Calculation of the rms local surface slope from E2)
and the known expression 6fz(q)|?)s yields

log 1 _ _
psi(L)= m{ﬁ [Xc =X

1 1/2
+ﬁ[xc“—xL“1] ,
(4)

X.=1+aQ¢? and X, =1+ak?£2.

For é&>ay and O<H<1, sinceQ.:é>1, Eq. (4) for L>¢
yields the asymptotic behaviopg~B(H)(o¢ M), with
B(H)=[Q~ H/a"(2—2H)?] which shows that the local
slope scales primarily as & 1.

Figure 1 depicts the dependence of the local s|&ag (4)
for L— +<0] on the roughness exponeHt for various val-

ues of the long-wavelength ratig¢. The effect ofH on the 1

local slope is dominant in comparison with that @f. In e H=82

fact, an increase dfl from 0 to 1 leads to a decrement of the 0.76 -, o =0.956h"* 1

local slope even by two orders of magnitude, while an incre- = s i £=531n"%

ment of g/¢ by an order of magnitude cause only a moderate \'{3

increment of the local slope which is more pronounced for < 074} .

large roughness exponertig >0.5). Finally, Fig. 2 displays

the rather weak dependence of the local surface slope on tt 073 i "%...... ]

in-plane length scalein terms of Eq.(4). o2} " .
During the growth of self-affine surfaces,and ¢ evolve

as a function of film thicknesgor constant deposition rate; 0.7 F ]

t~h) [3] aso=A;h#, and&=A,h'2 which upon substitu- 070t

tion into Eg. (4 for L>¢ we obtain pg;
~[B(H)A, /A ThBz=H/H Thys, the local slope is time in-
variantdpg¢/dh=0 for H=const, if and only ifBz=H. The

application of kinetic growth theories to heteroepitaxial sys-
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FIG. 2. Schematics of the rms local surface slppgL) vs L
for ap=0.3 nm,0=2.0 nm,{=40 nm, and three consecutive values
of the roughness exponehit (=0.7,0.8,0.9.

perimentally for room temperature grown Ag/quartz films
[13,17. Using the experimentally determined relatioos
=(0.956n%?® and &= (5.31)h%4° (h in nm) [13,17] and Eq.

(4) for L— + with H=0.82, we calculated in Fig. 3 the
local slope as a function of film thickness. The latter de-
creases with film thickness, however, less than 10% which is
to within the experimental error of the accuracy, where the
scaling exponents were also determined. Moreover, such a
variation takes place over a range of film thicknesses suffi-
cient to establish the asymptotic valpg~0.7.

Nevertheless, discrepancies of the deposition details aris-
ing from precise control of the deposition rate during initial
stages of growth, and frequent interruptions of the growth
processes in order to prevent sample heating, could alter the
mode of film growth by itself leading to the inconsistency
z#H/B [13]. From the experimental relationso
=(0.385Nn%%76 ¢£=(5.5)h"?8 and Eq.(4) for L— +oe,
with H=0.85, we calculated in Fig. 4 the local slope as a
functionof film thicknessh. As can be observed, the local
surface slope changes as an overall over the range 10—1000

100 200 300 400 500 600 700 800 900

h (nm)

FIG. 3. Schematics of the rms local surface slppevs h (for

tems was concluded earlier on growth studies of CuCl on = + ) for the silver films, wherez~B/H with a;=0.3 nm, &

CaFR,(111) [16], and the relationr3z=H was confirmed ex-

=(0.956N%2% ¢=(5.31)h°*° and roughness exponet=0.82.
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Equation(4) in the non-self-affine limitH=1 yields the

090 logarithmic ~ behavior p|y—;=(o/2"%a¢)(IN[1+aQ&]
0.85 - —2a)Y2 for L>¢. On the other hand, &1 =1 the self-affine
080 | correlationC(r)~e~"9*" [15] yields the Gaussian rough-
= o5l ness spectrunt]z(q)|?)y=[A/(2m)°] o2¢2e~ CEAT \with an
wo ot y 1 associated rms local surface slope,=2m"%(o/¢)[1
Q 0.70 - o — A2.2 2.2
I ] —e QT (Q2£2/4m) e A2 at L> £, For ¢>ay,
oesp H=0.85 ] we obtain in both casespy~27Y4c/¢) and ply_;
060F o =0385h%376 ~(olag)inY¥&lag). For oxhf, ¢xh'? and B=1/z
0551 N g=550% ] (H=1) [19], the Lorentzian model yields the logarithmic
S ] time dependencg|y_;~InY4(t) which compares to the be-
0.50 1 § havior observed in the anomalous scaling reg[@le while
100 200 300 200 300 600 700 800 900 the Gaussian model yielgg~ const, which compares to the
h (nm) behavior observed in unstable growth with considerable

Schwoebel barrierg20].
In conclusion, we investigated properties of the rms local
FIG. 4. Schematics of the rms local surface slpgevs h (for  gyrface slope of self-affine rough surfaces. Our calculations
L="ro) for the silver films wherez# S/H with a,=0.3 nm, @ \ere based on phenomenological surface models which de-
=(0.3850 %, ¢=(5.5)N™%, andH=0.85 The local slope in-  gpjte theirad hocnature can capture the correct self-affine
creases following a power law behavieh™™. scaling behavior, and compare reasonably well in many
cases with real data. Moreover, in terms of these models,
analytically solvable expressions of the rms local slope were
obtained which were also in agreement with the time invari-
Ance required in self-affine growth. Application of our results

preventing step-down diffusion and resulting in violation of§0 the case of heteroepitaxially grown metal films enabled

. . ; the estimation of the rms local slope over a wide range of
the self-affine hypothesisare unlikely to be present due FO film thicknesse$10—1000 nm Finalls, discrepancies in %e

the different observed morphologigsee scanning tunnel mi- d o ; ; :

. o eposition details can have great impact on the mode of film
lcroscope(ISTM) |m%gesh|n F'?' .1.Of Ref[\kﬂ] \}\rﬂ?g 1th[a1';]of growth by itself, which is revealed through the inconsistency
arge scale pyramids characterizing gro ' relation z#H/B among the scaling exponents or alterna-

In add|t|or_1, in our polycrystalline system, with ra”dom'y ort- tively the thickness variance of the local surface slope.
ented grains, Schwoebel effects are rather unlikely to occur.

However, if Schwoebel barriers are present, the slope of the | would like to acknowledge support from the Delft Uni-
pyramids remains constant for considerable barriers while iversity of Technology, useful discussions with J. Krim, and

nm closely by more than 60% following a power lgw
«h%42 since (8z—H)/H~0.42.

In the system under discussion, Schwoebel barrier
(which usually exist at the step edge of well-defined terrace

increases as a power law for weak barrigz8]. helpful correspondence with T.-M. Lu.
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